Sylan

Mathematics Referencec Sheet

Perimeter, Area, and Volume Formulas

Square
$A=s^{2}$
$P=4 s$

Parallelogram
$A=b h$
$P=2 a+2 b$

General Right Prism

$V=B h$
$S A=2 B+P h$
B is the area of the base and P is the perimeter of the base.

Hexagonal Prism
$V=B h$
$S A=2 B+6 s h$

Cube

$V=s^{3}$
$S A=6 s^{2}$

Circular Cylinder

$V=\pi r^{2} h$
$S A=2 \pi r^{2}+2 \pi r h$

General Right Regular Pyramid

Triangular Prism

$V=\frac{1}{2}(b c) h$
$S A=2\left[\frac{1}{2}(b c)\right]+h(a+b+c)$

Rectangular Prism

$V=l w h$
$S A=2 l w+2 l h+2 w h$

Sphere
$V=\frac{4}{3} \pi r^{3}$
$S A=4 \pi r^{2}$

Trapezoid
$A=\frac{1}{2}(a+c) h$
$P=a+b+c+d$

Circle
$A=\pi r^{2}$
$C=2 \pi r$ or $C=\pi d$
Triangle
$A=\frac{1}{2} b h$
$P=a+b+c$

$V=\frac{1}{3} B h$
$S A=B+\frac{1}{2} P l$
B is the area of the base, P is the perimeter of the base and l is the slant height

Square Pyramid
$V=\frac{1}{3} s^{2} h$
$S A=s^{2}+2 s l$

Right Circular Cone
$V=\frac{1}{3} \pi r^{2} h$
$S A=\pi r^{2}+\pi r l$

Algebra Formulas

Slope of a Line

$m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points on the line

Distance between Two Points

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points on a line

Midpoint of a Segment

$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$, where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the endpoints of the segment

Pythagorean Theorem

 $a^{2}+b^{2}=c^{2}$

Angles of a Polygon

The sum of the angles in a triangle is 180°.
The sum of the angles in an n-sided polygon is 180($n-2$).
The measure of one interior angle of a regular polygon is $\frac{180(n-2)}{n}$, where n is the number of sides.

Simple Interest

$I=p r t$; where I is interest, p is principal, r is rate and t is time

Special Right Triangles
 $45^{\circ}-45^{\circ}-90^{\circ}$ Right Triangle

Linear Equation: Slope Intercept Form

 $y=m x+b$, where m is the slope and b is the y-intercept
Linear Equation: Point-Slope Form

 $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line
Linear Equation: Standard Form

$A x+B y=C$, where A, B, and C are integers, A and B are not both zero, and A is positive.

Quadratic Formula

If $a x^{2}+b x+c=0$ and $a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Distance Formula

$d=r t, r=\frac{d}{t}$ or $t=\frac{d}{r}$; where d is distance, r is rate, and t is time

Compound Interest

$A=p\left(1+\frac{r}{n}\right)^{n t}$; where p is principal, r is annual rate, n is the number of compounds per year and t is time.

$$
30^{\circ}-60^{\circ}-90^{\circ} \text { Right Triangle }
$$

[^0]
Trigonometry Formulas

$\sin A=\frac{a}{c}=\frac{\text { opposite side }}{\text { hypotenuse }}$
$\cos A=\frac{b}{c}=\frac{\text { adjacent side }}{\text { hypotenuse }}$
$\tan A=\frac{a}{b}=\frac{\text { opposite side }}{\text { adjacent side }}$
Law of Sines
$\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}=\frac{\operatorname{Sin} C}{c}$

$\csc A=\frac{c}{a}=\frac{\text { hypotenuse }}{\text { opposite side }}=\frac{1}{\sin A}$
$\sec A=\frac{c}{b}=\frac{\text { hypotenuse }}{\text { adjacent side }}=\frac{1}{\cos A}$
$\cot A=\frac{b}{a}=\frac{\text { adjacent side }}{\text { opposite sidea }}=\frac{1}{\tan A}$
Law of Cosines
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$

Probability Formulas

Probability (event) $=\frac{\text { number of favorable outcomes }}{\text { number of total possible outcomes }}$
Probability Range is from 0 (impossible) to 1 (certainty)

Independent Events

Outcome of one event does not affect the probability of another.

$$
P(A, B)=P(A) \times P(B)
$$

Example: What is the probability of getting two heads when tossing 2 coins?

$$
P(H, H)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

Dependent Events

Outcome of second event is dependent upon outcome of first event.

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

Example: What is the probability of choosing two blue socks from a drawer containing 3 blue socks, 5 red socks, and 2 white socks?
$P(B$ and $B)=\frac{3}{10} \times \frac{2}{9}=\frac{6}{90}=\frac{1}{15}$

[^0]: © 2016 Sylvan Learning, LLC. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means without permission in writing from Sylvan Learning, LLC, except that only Licensees of Sylvan Learning, LLC are permitted to copy this work for use in delivery of Sylvan services.

